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@ Motivation for large-scale games
@ Zero-Sum Games, Security Policies

@ Randomized Algorithms for Games (SSP Algorithm)

@ Case Study in Network Security (time permiting...)
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...... hide a treasure among N
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., ® hiding places in the plane !
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Path Planning Games: Hide & Seek ¥ engineering

o What is the “best” way to
el hide a treasure among N
5 hiding places in the plane ?

o Formulate problem as game

E @ P1 selects hiding place (N locations)
‘ > @ P2 selects robot path (N! paths)
i, Zero-sum game
, @ P1 wants to maximize time to reach treasure
o @ P2 has opposite objective

‘ Saddle-point is a P1 places treasure based on “optimal” distribution
mixed policy P2 selects path based on “optimal” distribution

Which???
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Cyber Situation Awareness ARO MURI:

Protecting the cyber infrastructure that supports “missions”

e ® .
.......

processing an k

monitoring a critical ~ @dMIssions process
infrastructure at a university

Cyber Awareness Questions:
¢ What 1s in the impact of a cyber-asset vulnerability (known or unknown)?
¢ What 1s in the impact of a particular counter measure (e.g., firewall control)?

The Bank

International Capture the Flag (iCTF):

@ @ Distributed, wide-area security exercise
Serice1 ez senice 10 , Batnet C&C ‘ to test the security skills of the
o~ Y participants

@ Held yearly since 2003, under the
3 organization of Prof. Giovanni Vigna @
ScoreBoard UCSB
@ 2010 edition involved 72 teams from
around the world, over 900 participants

2] ,
& Firewall/IDS
Briber

. . - -
Flag Submission O corm— T~ -
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2010 iCTF Game

re

Key ingredients

Game objective & Actors

¢ defender runs web server and collects revenue (when
firewalls open) and bribes (when firewalls closed)

¢ attacker collects revenue by compromising active services

. Players’ Actions

¢ defender controls firewall
¢ attacker explores service vulnerabilities

. Information Structure

¢ defender knows current status of several missions and
services active

¢ attacker has access to full state information (option I) or
partial state information (option II)

Problem statistics:

©

©

© ©

over 7800 distinct mission states (defender observations)

over 2500 distinct observations available to the attacker

defender can choose among about 102527 distinct policies

attacker can choose among 10736 — 102616 distinct policies, depending
on attacker's level of expertise

5% UCSANTA BARBARA

¥ engineering

Altack Failed )

™ Eod

Reporting & Aggregition

Accept Cargo
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Randomized Search (H&S) ¥ engineering

D
o What is the “best” way to
T hide a treasure among N
""""" “; ? hiding places in the plane ?
? @ P1 selects robot path (N! paths)
g @ P2 selects hiding place (N locations)
_
: 2
o -.

: Randomized algorithms:
2 When the exhaustive exploration of a
combinatorial decision tree is not possible...

. explore a random subset of it
’ { 2

Motivation for this work:
How can a player “protect” herself from an
opponent engaged in random exploration?
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Two players: Each player selects a policy:
P1 - minimizer S1 - set of available policies for P1
&— maximizer S2 - set of available policies forg
——

All possible game outcomes can be encoded in a matrix (2D-array),
jointly indexed by the actions of the players

game outcome when
P1 selects|policy i
. P2 selects|policy j
Qi j Pl.‘s
policy We are interested in games in which,
at least one (possibly both)
dimensions of this matrix are very large.

R

P2‘s policy

Mixed security level for P1 (minimizer): V := min max E[a;;] = min maxy'Az
y 2 y oz




Randomized Search in Matrix Games
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? Suppose P2 (searcher) only considers an
(unknown) random subset of the N/ paths

o and (somehow) selects a policy based on those...
2 P1°s

olic

- A policy

R

"’

P2‘s policy

Can P1 (hider) guarantee some minimum search time
1. without knowing which random subset was chosen
2. with a small computational effort ?
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Suppose P2 only considers an (unknown) Pl
random subset of its policies to compute As *polic
a (mixed) policy z*... y

Player P2

1. Player P1 randomly selects a submatrix of the overall game '
P2‘s policy

K g —

Player P1

Y

Al

2. P1 solves the corresponding subgame (as if it was the whole game) and computes
¢ mixed security level Vi

: : L in very large games, submatrix
¢ corresponding security policy y

A; will likely not overlap the
3. P1 plays y* against P2’s policy z* matrix Az used by P2
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Sampled-Security Policy Algorithm (SSP) (,) engineering

Suppose P2 only considers an (unknown)
random subset of its policies to compute A,
a (mixed) policy z*...

Player P2

1. Player P1 randomly selects a submatrix of the overall game

K g —

Player P1

Y

in very large games, submatrix
A; will likely not overlap the
matrix Az used by P2

Al

~
Because of independent subsampling, a

. player can now be unpleasantly surprised:
2. P1 solves the corresponding subgame By« x[ai;] > Vi

¢ mixed security level Vi — v

——

¢ corresponding security policy y* outcome larger than minimizer expected

. : , : . based on its submatrix A;
3. P1 plays y* against P2’s policy z - Y,
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Probabilistic notion of security:
e probability of (unpleasant) surprises should be below a pre-specified bound
¢ with more computational power, one can demand lower prob. of surprise

Definition: The SSP algorithm is €—secure for P1 (minimizer)

with confidence 1-0 if

P(%’Z* [azﬂ > V] Le) <0

outcome larger than
what P1 expected
(by more than € )

“Surprise” can arise because:
e our policy y* is actually bad
¢ our security value Vi is overly optimistic
¢ P2 was lucky in the selection of z*
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Security with High Probability Y engineering

Probabilistic notion of security:
e probability of (unpleasant) surprises should be below a pre-specified bound
¢ with more computational power, one can demand lower prob. of surprise

Definition: The SSP algorithm is €—secure for P1 (minimizer)
with confidence 1-0 if

_

P(Ey*’z* [azﬂ > Vi LE) <0

outcome larger than
what P1 expected
(by more than € )

“Surprise” can arise because:
e our policy y* is actually bad
¢ our security value Vi is overly optimistic
¢ P2 was lucky in the selection of 2 ot 0 easily under our control

} avoidable with very high probability
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Security with High Probability

» engineering

Probabilistic notion of security:
e probability of (unpleasant) surprises should be below a pre-specified bound
¢ with more computational power, one can demand lower prob. of surprise

Definition: The SSP algorithm is €—secure for P1 (minimizer)

with confidence 1-0 if

P(%’Z* [azﬂ > V] Le) <0

outcome larger than P1 expected
(by more than € )

Definition: A particular policy y* and value Vi is €—secure for P1 (minimizer)

with confidence 1-0 if
P(Ey*,z* [aij] > V] 4+ € | y*,V1) <0

“Surprise” only because:
¢ P2 was lucky in the selection of z*
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SSP Key Result

Player P1

» engineering

Pl°‘s A2
ni cols policy

A nz cols
: m cols Player P2

P2°s policy
Theorem: The SSP algorithm 1s € = 0 — secure for Pl (minimizer)
with confidence 1-0, for 5 ine
n1

Conversely, to obtain desired confidence level O, suffices to select

“fat” sampling for A;
ni 12
— = F > 1 U
™ test more options for
opponent than own
(by appropriate ratio)
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SSP Key Result

Player P1

W englneerlng

Pl°‘s A2
ni cols policy

A 1 ny cols
: T EO Player P2

I . i I i

P2°s policy

Theorem: The SSP algorithm 1s € = 0 — secure for Pl (minimizer)
with confidence 1 ;5, for Mo

Game-independent bounds
¢ valid for any game

Conversely, to obtain desired| ¢ independent of the size of the game

Bounds on relative computation
n1 o . ;
— = 5 > 1 ¢ required size of my sample depends on
™ size of opponents’ sample (n2)
¢ the more I search for a good solution (large m), the

more options need to consider for opponent (large n1)
_ y,
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Security with High Probability (recall) ¥ engineering

Definition: The SSP algorithm is €—secure for P1 (minimizer)

with confidence 1-0 if

P(E@ﬂz* [aij] > Vl LE) <9

—~—

outcome larger than P1 expected
(by more than € )

“Surprise” can arise because:
¢ our policy y* is actually bad
¢ our security value Vi is overly optimistic
¢ P2 was lucky in the selection of z*

Definition: A particular policy y* and value Vi is €—secure for P1 (minimizer)

with confidence 1-0 if
P(Ey*7z* [aij] > V] + € ‘ y*,Vl) <9

“Surprise” only because:
¢ P2 was lucky in the selection of z*
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SSP Key Result (take 2)

Player P1

¥ engineering

Pl*s A,
ni cols policy

A 1 nz cols
1 L EO Player P2

I . i I i

P2°s policy

Theorem: With probability larger than /—f3, the SSP policy y* and value V; are
€ = 0 — secure for P1 ( minimizer) with confidence 1-0, for

addltlonal term

“Surprise” can arise because:
¢ our policy y* is actually bad only with probability § (can be made extremely
¢ our security value V; is overly optimistic | SMal ™~ 10 with small computational cost)

@ P2 was lucky in the selection of 2 oo s
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2010 iCTF Game
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Key ingredients

Game objective & Actors

¢ defender runs web server and collects revenue (when
firewalls open) and bribes (when firewalls closed)

¢ attacker collects revenue by compromising active services

. Players’ Actions

¢ defender controls firewall
¢ attacker explores service vulnerabilities

. Information Structure

¢ defender knows current status of several missions and
services active

¢ attacker has access to full state information (option I) or
partial state information (option II)

Problem statistics:

©

©

© ©

over 7800 distinct mission states (defender observations)

over 2500 distinct observations available to the attacker

defender can choose among about 102527 distinct policies

attacker can choose among 10736 — 102616 distinct policies, depending
on attacker's level of expertise
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Baseline

¢ No attack

¢ Firewall always open Defender receives avg. 314 units for completion of 4 missions
¢ All revenue from bot
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Baseline

¢ No attack
¢ Firewall always open Defender receives avg. 314 units for completion of 4 missions

¢ All revenue from bot

Attacks under Option I (ambiguous state information) T
¢ Different levels of attacker sophistication
¢ Bribes not allowed
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Cybaware

Baseline

¢ No attack
¢ Firewall always open } Defender receives avg. 314 units for completion of 4 missions

¢ All revenue from bot

Attacks under Option II (full state information) e
¢ Different levels of attacker sophistication )

¢ Bribes allowed
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Baseline
¢ No : : : .. )
= ¢ Provides Cyber-security office estimates of mission success -
¢ Fire :
All ¢ Takes 1nto account the effect of attacks & counter measures Lol
Q . C .
At ¢ Responses as a function of attacker sophistication
ac - . . ere, . . -
"1 ¢ Ability to play what-if scenarios (vulnerabilities, information, etc.)
¢ Dif Y,
¢ Bribes allowed
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Large matrix games are fun/
What I have covered:
@ Basic probability guarantees of randomized sampling for games

@ Case study in network security

What I have NOT covered:

@ Can we determine the security level of an arbitrary policy obtained by a method
other than SSP? Yes

@ Mistmatch between the players’ distributions
¢ 1f we sample “better” than opponent, no change in results

e if we sample “worse” than opponent, degradation in confidence level 0
(but recoverable with more sampling)

@ Can we improve upon these bounds? Unclear
@ Multi-core parallel implementations

@ Other applications...
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