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The Plan...

Motivation for large-scale games

Zero-Sum Games, Security Policies

Randomized Algorithms for Games (SSP Algorithm)

Case Study in Network Security (time permiting...)



Path Planning Games: Hide & Seek

?

?

?

?

?

?

?
?

?

?
?

What is the “best” way to 
hide a treasure among N 

hiding places in the plane ?



Path Planning Games: Hide & Seek
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What is the “best” way to 
hide a treasure among N 

hiding places in the plane ?

Formulate problem as game
P1 selects hiding place (N locations)
P2 selects robot path (N! paths)

Zero-sum game
P1 wants to maximize time to reach treasure
P2 has opposite objective 

Saddle-point is a 
mixed policy

P1 places treasure based on “optimal” distribution
P2 selects path based on “optimal” distribution

Which???



Network Security

Cyber Situation Awareness ARO MURI:
Protecting the cyber infrastructure that supports “missions”

processing an 
online purchase

monitoring a critical 
infrastructure

managing the 
admissions process 

at a university
Cyber Awareness Questions:

What is in the impact of a cyber-asset vulnerability (known or unknown)?
What is in the impact of a particular counter measure (e.g., firewall control)?

International Capture the Flag (iCTF):
Distributed, wide-area security exercise 
to test the security skills of the 
participants
Held yearly since 2003, under the 
organization of Prof. Giovanni Vigna @ 
UCSB
2010 edition involved 72 teams from 
around the world, over 900 participants

Cybaware 

Service'1'

Internal'
Network'

…'

VPN'server'

72'teams'from'16'countries,'900'students'playing'live:''
the'UCSB'iCTF'is'the'world’s'largest'hacking'compeKKon!''

Firewall/IDS'

Service'2' …' Service'10' Botnet'C&C'

The'Bank'

ScoreBot'

Briber'

Flag'Submission'

.'
.' .'

.'

1st'Prize:'$1,000'
Sponsored'by''

Challenges'

ScoreBoard'

LityaLeaks'

iCTF*Architecture*



2010 iCTF Game

services S3, S7

services S4, S5

services S0, S2
service S6

service S1

services S6, S2

service S9service S8

services S0, S1
services S3, S9

service S2

service S0service S1services S3, S8

services S2, S3

Key ingredients
1. Game objective & Actors

defender runs web server and collects revenue (when 
firewalls open) and bribes (when firewalls closed)
attacker collects revenue by compromising active services

2. Players’ Actions
defender controls firewall
attacker explores service vulnerabilities

3. Information Structure
defender knows current status of several missions and 
services active
attacker has access to full state information (option I) or 
partial state information (option II)

Problem statistics:
over 7800 distinct mission states (defender observations)
over 2500 distinct observations available to the attacker
defender can choose among about 102527 distinct policies
attacker can choose among 10756 – 102616 distinct policies, depending 
on attacker's level of expertise



Randomized Search (H&S)

?

?

?

?

?

?

?
?

?

?
?

What is the “best” way to 
hide a treasure among N 

hiding places in the plane ?

P1 selects robot path (N! paths)
P2 selects hiding place (N locations)

Randomized algorithms:
When the exhaustive exploration of a 
combinatorial decision tree is not possible…

explore a random subset of it

Motivation for this work:
How can a player “protect” herself from an 
opponent engaged in random exploration?
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Zero-Sum Matrix Games

Two players:
P1 - minimizer
P2 - maximizer

Each player selects a policy:
S1 - set of available policies for P1
S2 - set of available policies for P2

All possible game outcomes can be encoded in a matrix (2D-array),
jointly indexed by the actions of the players

P1‘s 
policy

P2‘s policy

game outcome when
P1 selects policy i
P2 selects policy j

We are interested in games in which, 
at least one (possibly both) 

dimensions of this matrix are very large.

Mixed security level for P1 (minimizer): V – min

y
max

z
Eraijs “ min

y
max

z
y1Az



Randomized Search in Matrix Games

?

?

?

?

?

?

?
?

?

?
?

Suppose P2 (searcher) only considers an 
(unknown) random subset of the N! paths
and (somehow) selects a policy based on those...

Can P1 (hider) guarantee some minimum search time 
1. without knowing which random subset was chosen
2. with a small computational effort ? 

P2

2

66664

3

77775
P1‘s 

policy

P2‘s policy

A2



Sampled-Security Policy Algorithm (SSP)

1. Player P1 randomly selects a submatrix of the overall game
2

66664

3

77775

Player P1

2. P1 solves the corresponding subgame (as if it was the whole game) and computes
mixed security level V1 
corresponding security policy y*

A1

y⇤

3. P1 plays y* against P2’s policy z*

in very large games, submatrix 
A1 will likely not overlap the 

matrix A2 used by P2

A2

2

66664

3

77775
Player P2

P1‘s 
policy

P2‘s policy

Suppose P2 only considers an (unknown) 
random subset of its policies to compute 
a (mixed) policy z*...



Sampled-Security Policy Algorithm (SSP)

1. Player P1 randomly selects a submatrix of the overall game
2

66664

3

77775

Player P1

2. P1 solves the corresponding subgame (as if it was the whole game) and computes
mixed security level V1 
corresponding security policy y*

A1

y⇤

3. P1 plays y* against P2’s policy z*

in very large games, submatrix 
A1 will likely not overlap the 

matrix A2 used by P2

A2

2

66664

3

77775
Player P2

Suppose P2 only considers an (unknown) 
random subset of its policies to compute 
a (mixed) policy z*...

Because of independent subsampling, a 
player can now be unpleasantly surprised:

outcome larger than minimizer expected
based on its submatrix A1

Ey˚,z˚ raijs ° V1



Security with High Probability

Definition:	
 The SSP algorithm is ϵ−secure for P1 (minimizer)
	
 with confidence 1−δ if 

outcome larger than 
what P1 expected
(by more than∊)

PpEy˚,z˚ raijs ° V1 ` ✏q § �

Probabilistic notion of security:
probability of (unpleasant) surprises should be below a pre-specified bound
with more computational power, one can demand lower prob. of surprise

“Surprise” can arise because:
our policy y* is actually bad
our security value V1 is overly optimistic
P2 was lucky in the selection of z*



Security with High Probability

Definition:	
 The SSP algorithm is ϵ−secure for P1 (minimizer)
	
 with confidence 1−δ if 

PpEy˚,z˚ raijs ° V1 ` ✏q § �

Probabilistic notion of security:
probability of (unpleasant) surprises should be below a pre-specified bound
with more computational power, one can demand lower prob. of surprise

“Surprise” can arise because:
our policy y* is actually bad
our security value V1 is overly optimistic
P2 was lucky in the selection of z*

avoidable with very high probability

not so easily under our control

outcome larger than 
what P1 expected
(by more than∊)



Security with High Probability

Probabilistic notion of security:
probability of (unpleasant) surprises should be below a pre-specified bound
with more computational power, one can demand lower prob. of surprise

Definition:	
 The SSP algorithm is ϵ−secure for P1 (minimizer)
	
 with confidence 1−δ if 

outcome larger than P1 expected
(by more than∊)

PpEy˚,z˚ raijs ° V1 ` ✏q § �

Definition:	
 A particular policy y* and value V1 is ϵ−secure for P1 (minimizer)
	
 with confidence 1−δ if 

PpEy˚,z˚ raijs ° V1 ` ✏ | y˚, V1q § �

“Surprise” only because:
P2 was lucky in the selection of z*



SSP Key Result

A2

2

66664

3

77775
Player P2

m2 cols

n2 cols

Theorem:	
 The SSP algorithm is ϵ = 0 − secure for P1 (minimizer)
	
 with confidence 1−δ, for 

Conversely, to obtain desired confidence level δ, suffices to select

“fat” sampling for A1

⇓
test more options for 
opponent than own

(by appropriate ratio)

2

66664

3

77775
A1

Player P1

n1 cols

m1 cols

� =
m1n2

n1

n1

m1
• n2

�
° 1

P1‘s 
policy

P2‘s policy



SSP Key Result

A2

2

66664

3

77775
Player P2

m2 cols

n2 cols

2

66664

3

77775
A1

Player P1

n1 cols

m1 cols

P1‘s 
policy

Theorem:	
 The SSP algorithm is ϵ = 0 − secure for P1 (minimizer)
	
 with confidence 1−δ, for 

Conversely, to obtain desired confidence level δ, suffices to select

“fat” sampling for A1

⇓
test more options for 
opponent than own

(by appropriate ratio)

� =
m1n2

n1

n1

m1
• n2

�
° 1

Game-independent bounds
valid for any game
independent of the size of the game

Bounds on relative computation
required size of my sample depends on
size of opponents’ sample (n2)
the more I search for a good solution (large m1), the 
more options need to consider for opponent (large n1) 

P2‘s policy



Security with High Probability (recall)

Definition:	
 The SSP algorithm is ϵ−secure for P1 (minimizer)
	
 with confidence 1−δ if 

outcome larger than P1 expected
(by more than∊)

PpEy˚,z˚ raijs ° V1 ` ✏q § �

Definition:	
 A particular policy y* and value V1 is ϵ−secure for P1 (minimizer)
	
 with confidence 1−δ if 

PpEy˚,z˚ raijs ° V1 ` ✏ | y˚, V1q § �

“Surprise” only because:
P2 was lucky in the selection of z*

“Surprise” can arise because:
our policy y* is actually bad
our security value V1 is overly optimistic
P2 was lucky in the selection of z*



SSP Key Result (take 2)

A2

2

66664

3

77775
Player P2

m2 cols

n2 cols

Theorem:	
 With probability larger than 1−β, the SSP policy y* and value V1 are 
ϵ = 0 − secure for P1 (minimizer) with confidence 1−δ, for 

2

66664

3

77775
A1

Player P1

n1 cols

m1 cols

additional term

“Surprise” can arise because:
our policy y* is actually bad
our security value V1 is overly optimistic
P2 was lucky in the selection of z*

only with probability β (can be made extremely 
small ～ 10-9 with small computational cost)

with probability δ

n1 •
´
m1 `

c
m1 ln

1

�2

¯n2

�

P1‘s 
policy

P2‘s policy



2010 iCTF Game

services S3, S7

services S4, S5

services S0, S2
service S6

service S1

services S6, S2

service S9service S8

services S0, S1
services S3, S9

service S2

service S0service S1services S3, S8

services S2, S3

Key ingredients
1. Game objective & Actors

defender runs web server and collects revenue (when 
firewalls open) and bribes (when firewalls closed)
attacker collects revenue by compromising active services

2. Players’ Actions
defender controls firewall
attacker explores service vulnerabilities

3. Information Structure
defender knows current status of several missions and 
services active
attacker has access to full state information (option I) or 
partial state information (option II)

Problem statistics:
over 7800 distinct mission states (defender observations)
over 2500 distinct observations available to the attacker
defender can choose among about 102527 distinct policies
attacker can choose among 10756 – 102616 distinct policies, depending 
on attacker's level of expertise



SSP-based Analysis

services S3, S7

services S4, S5

services S0, S2
service S6

service S1

services S6, S2

service S9service S8

services S0, S1
services S3, S9

service S2

service S0service S1services S3, S8

services S2, S3

Baseline
No attack
Firewall always open
All revenue from bot

Defender receives avg. 314 units for completion of 4 missions



SSP-based Analysis

services S3, S7

services S4, S5

services S0, S2
service S6

service S1

services S6, S2

service S9service S8

services S0, S1
services S3, S9

service S2

service S0service S1services S3, S8

services S2, S3

Baseline
No attack
Firewall always open
All revenue from bot

Attacks under Option I (ambiguous state information)
Different levels of attacker sophistication
Bribes not allowed

Level of attacker 
sophistication

# units received by Defender
 for 1 round of missions

[Option I, no bribes]

no service vulnerable 
(baseline) 314

S2 
(vulnerable to 38 teams) 240

S2, S6, S9 
(vulnerable to at least 6 team) 79

S0, S2, S4, S6, S7, S8, S9 
(vulnerable to at least 1 team) 11

all services vulnerable 11

Increasing level of 
attacker sophistication Firewall closed 

whenever a vulnerable 
service is active

Defender receives avg. 314 units for completion of 4 missions
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services S4, S5

services S0, S2
service S6

service S1

services S6, S2

service S9service S8

services S0, S1
services S3, S9

service S2

service S0service S1services S3, S8

services S2, S3

Baseline
No attack
Firewall always open
All revenue from bot

Attacks under Option II (full state information)
Different levels of attacker sophistication
Bribes allowed

Level of attacker 
sophistication

# units received by Litya
 for 1 round of missions

[Option I, no bribes]

# units received by Litya
 for 1 round of missions
[Option I, with bribes]

# units received by Litya
 for 1 round of missions
[Option II, with bribes]

no service vulnerable 
(baseline) 314 314 314

S2 
(vulnerable to 38 teams) 240 240 138

S2, S6, S9 
(vulnerable to at least 6 team) 79 79 43

S0, S2, S4, S6, S7, S8, S9 
(vulnerable to at least 1 team) 11 -738 -1327

all services vulnerable 11 -848 -1917

Increasing level of 
attacker sophistication

Defender receives avg. 314 units for completion of 4 missions



SSP-based Analysis

services S3, S7

services S4, S5

services S0, S2
service S6

service S1

services S6, S2

service S9service S8

services S0, S1
services S3, S9

service S2

service S0service S1services S3, S8

services S2, S3

Baseline
No attack
Firewall always open
All revenue from bot

Attacks under Option II (full state information)
Different levels of attacker sophistication
Bribes allowed

Litya receives avg. 314 units for completion of all 4 missions

Level of attacker 
sophistication

# units received by Litya
 for 1 round of missions

[Option I, no bribes]

# units received by Litya
 for 1 round of missions
[Option I, with bribes]

# units received by Litya
 for 1 round of missions
[Option II, with bribes]

no service vulnerable 
(baseline) 314 314 314

S2 
(vulnerable to 38 teams) 240 240 138

S2, S6, S9 
(vulnerable to at least 6 team) 79 79 43

S0, S2, S4, S6, S7, S8, S9 
(vulnerable to at least 1 team) 11 -738 -1327

all services vulnerable 11 -848 -1917

Increasing level of 
attacker sophistication

Provides Cyber-security office estimates of mission success 
Takes into account the effect of attacks & counter measures
Responses as a function of attacker sophistication
Ability to play what-if scenarios (vulnerabilities, information, etc.)



Conclusions

Large matrix games are fun!
What I have covered:

Basic probability guarantees of randomized sampling for games

Case study in network security

What I have NOT covered:
Can we determine the security level of an arbitrary policy obtained by a method 
other than SSP? Yes

Mistmatch between the players’ distributions 
if we sample “better” than opponent, no change in results
if we sample “worse” than opponent, degradation in confidence level δ
(but recoverable with more sampling)

Can we improve upon these bounds? Unclear

Multi-core parallel implementations

Other applications...
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